Detailed shape analysis of azimuthal distribution with respect to the reaction plane at RHIC – PHENIX

Hiroshi Masui for the PHENIX collaboration Univ. of Tsukuba

JPS meeting @ Tokyo University of Science, Noda Campus

Outline

- Introduction
- Experimental Setup
- Method
- Results
- Summary

Introduction Azimuthal anisotropy

- Azimuthal anisotropy is expected as sensitive probe in the early stage of relativistic heavy ion collisions
 - Spatial anisotropy in the coordinate space.
 - Parton energy loss in the medium (Jet Quench).
- More detailed study of azimuthal distribution might tell us the origin of v₂.
 - 2 particle correlation with respect to the reaction plane.
 - Higher harmonics of collective flow (ex. v₄)
 - Flow + jet correlation

Experimental Setup

- Minimum Bias Trigger
 - BBC (Beam Beam Counter)
- Collision Vertex
 - BBC
- Centrality
 - BBC, ZDC (Zero Degree Calorimeter)
- Reaction Plane
 - BBC
- Tracking / Momentum
 - Drift Chamber, Pad Chamber

Trigger hadron $p_T = 3 - 6 \text{ GeV/c}$

Flow pattern is shifted by $\pi/2$:

J. Bielcikova, S. Esumi, K. Filimonov, S. Voloshin, and J.P. Wurm, Phys. Rev. C69 021901 (2004)

Method

- 2 particle correlation with respect to the reaction plane
- Trigger hadron is divided into two event class
 - In-plane : $|\phi \Psi| < \pi/4$
 - Out-of-plane : $|\phi \Psi| > \pi/4$
- Flow contribution can be subtracted
 - Measure v₂ by independent analysis.
 - Neglect higher order (v₄ etc.)
 contribution

$$rac{d\mathrm{n^{in}}}{d\Delta\phi}\propto 1+2v_2rac{\pi v_2+2\langle\cos2\Delta\Psi\rangle}{\pi+4v_2\langle\cos2\Delta\Psi\rangle}\cos2\Delta\phi;$$

$$\frac{d {\rm n}^{\rm out}}{d \Delta \phi} \propto 1 + 2 v_2 \frac{\pi v_2 - 2 \langle \cos 2 \Delta \Psi \rangle}{\pi - 4 v_2 \langle \cos 2 \Delta \Psi \rangle} \cos 2 \Delta \phi,$$

Di-hadron correlation function with respect to the reaction plane

- Consistent with Run2 results.
- Jet like structure $(\Delta \phi = 0 \text{ and } \pi)$, and flow (v_2) contribution.

Pair jet distribution

PID hadron v_2 in Au + Au @ $\sqrt{s_{NN}}$ = 200 GeV

- v₂ of identified hadrons in Au + Au collisions.
 - Run4 analysis is ongoing.
 - ~ 1/10 of total amount of data.
 - The Run4
 results are
 consistent with
 Run2 data.

Elliptic flow in Cu + Cu

Summary

Correlation

- No big difference can be seen between in-plane and out-of-plane
 - Not enough reaction plane resolution to measure difference of in and out?
 - Due to flowing jet ?

PID hadron v₂

- Systematic study of v₂ for identified hadron will be done soon
 - Energy dependence (200 GeV vs. 62.4 GeV)
 - System dependence (Au + Au vs. Cu + Cu)

Back up

Reaction plane method in PHENIX

- R.P. determination @ BBC
 - $|\eta| = 3 4$, Full azimuthal coverage.
 - 3 unit rapidity away from midrapidity.
 - Expect to reduce non-flow contribution
- For improvement of flow measurement
 - $\text{ MVD } (|\eta| = 1 3)$
 - R.P. @ Beam rapidity (SMD, FCL)
 - Help to v₁ measurement
 - Sensitivity to non-flow contribution

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\langle w \sin (n\phi) \rangle}{\langle w \cos (n\phi) \rangle} \right)$$

Non flow (azimuthal correlation not related to R.P.) ex. Resonance decay, jets etc ...

Correlation function

Subtracted jet-pair distribution

